

Concord

[image: Concord Logo]
Project Concord is an open source scalable decentralized Blockchain. It
leverages the Concord-BFT [https://github.com/vmware/concord-bft] engine
based on years of academic and industrial research, and implements
a Blockchain which supports running Ethereum smart contracts.

This documentation is written for different types of users. IT administrators
who wish to deploy Concord will want to read the installation and deployment section.
Blockchain developers who want to build and add new smart contracts will want to read the tutorials,
and developers who want to add new functionality, such as adding support for new APIs or state machines will
want to read the developer section. For all users new to Concord, we recommend
starting with the getting started section.

The table of contents below and on the left provides easy access to documentation
for your topic of interest. You can also use the search bar in the top left
corner.

Contents

Keyword Index, Search Page

	Getting Started

	Deployment
	Concord Nodes
	Confguration File Generator

	configurationInput.yml

	concord.config

	genesis.json

	TLS certificates

	EthRPC Nodes

	Tutorials
	Installing your first smart contract

	Developer
	Launching the Dev Container

	Code Format

	Getting Help

Getting Started

The preferred way to deploy and develop on Concord is through the use of Docker [https://www.docker.com/],
which should be all you need to get a deployment of Concord running locally.

Once you have Docker installed, checkout the Concord repository:

git clone https://github.com/vmware/concord.git

After that, from the Concord directory, run the build script for the Docker images:

cd concord
docker/build.images.sh

You’re now ready to launch Concord. Locally, docker-compose makes it very easy to setup a
Concord cluster.

Attention

The following instructions setup Concord to use insecure (http) communication
for simplicity and should not be used in production.

To launch a simple 4-node Concord cluster, launch the simple4.yml file:

docker-compose -f docker/compose/simple4.yml up

You should see some messages go by, indicating the cluster is starting up. Once the cluster
is up, the next setup is to interact with it. Since this cluster comes with the ethRPC bridge,
we can communciate with it using standard Ethereum tooling.

Truffle [https://www.npmjs.com/package/truffle] is a popular tool for developing and debugging
Ethereum smart contracts. If you’re familar with Truffle (note that we only support Truffle 4.x at the moment)
and have used it before, you can connect to the blockchain instance on your local machine
at http://localhost:8545, which will connect to the first Concord node in your system.

Otherwise, the repository contains a docker image with Truffle pre-installed to deploy to the simple
4 node Concord instance you just created. To start the image and connect to the first Concord node, run:

docker exec -it compose_concord-truffle_1 bash
truffle console --network ethrpc1

Now you can run a test transaction using Truffle. Type the following in the Truffle console:

var accounts = await web3.eth.getAccounts()
await web3.eth.sendTransaction({from: accounts[0], to: accounts[1], value: web3.utils.toWei("0", "ether")})

You should get ouptut similar to:

{
blockHash: '0xb3bb6deed1446b30dcdaec50faf1b7fe40f8543bccb552743d4869cab5b50e63',
logsBloom: '0x00',
gasUsed: 10000000,
blockNumber: 6,
cumulativeGasUsed: 10000000,
contractAddress: null,
transactionIndex: 0,
from: '0x262c0d7ab5ffd4ede2199f6ea793f819e1abb019',
to: '0x5bb088f57365907b1840e45984cae028a82af934',
logs: [],
transactionHash: '0x9a6f2ae673da7454d66c74116183f680b0ea5d06e49f04bbcd312f0b362ac705',
status: true
}

This creates a transaction which takes 0 Ether from test account 0 and sends it to test account 1, and prints
out the information of the resulting transaction. Congratulations, you’ve just executed your first Ethereum
transaction on Concord!

From here, you can look into how to deploy Concord, read the tutorials on how
to install and interact with smart contracts on Concord, or learn how to develop support for your
own custom API on Concord.

Deployment

Currently, a Concord deployment consists of two types of nodes:

	Concord nodes, which participate in the the Byzantine consensus protocol and perform state machine replication.

	EthRPC nodes, which translate Ethereum API calls into requests that Concord nodes can understand.

A deployment needs to contain \(3F+1\) concord nodes, where \(F\) is the number of failures
the deployment needs to tolerate. In a typical deployment, each Concord node will have a single,
possibly co-located EthRPC node. Ethereum applications, such as Truffle [https://www.npmjs.com/package/truffle],
interact with the deployment through the EthRPC node.

Each node is typically deployed as a Docker container, which allows for easy deployment through tools such as
docker-compose and Kubernetes.

In the next sections, we detail how to setup each type of node.

Concord Nodes

Concord nodes are provided by the concord-node container. Typically, you run the container with the command:

docker run concord-node:latest --expose 3501,3502,3503,3504,3505 -p 5848 -v <log-path>:/concord/log \
-v <rocksdb-path>:/concord/rocksdbdata -v <localconfig-path>:/concord/config-local \
-v <publicconfig-path>:/concord/config-public:ro -v <tlscert-path>:/concord/tls_certs:ro

The paths contain the database, log, configuration and TLS certificates for the node running in the container.

	<log-path> is a path where Concord stores debug logs.

	<rocksdb-path> is a path that contains the rocksdb database replicated by the state machine.

	<localconfig-path> is a path containing a concord.config file for configuring this Concord instance.

	<publicconfig-path> is a path containing a genesis.json file, which describes the genesis block for
the deployment, and a log4cplus.properties file which configures the logging level for each component.

	<tlscert-path> is a path to TLS certificates used to encrypt communication. The certificates are stored in pem format.

Ports 3501-3505 are exposed because they are specified as communication ports in the configuration files
that other nodes will communicate with. Port 5848 is published to the host, so that EthRPC nodes can easily
communicate using the hosts local IP address.

Concord requires two sets of configuration files. The local concord.config file configures per node settings
and the public and private keys used to sign requests. The public dockerConfigurationInput.yml configure
global settings, such as the size of the cluster and its configuration. Both of these files are yaml files and
their schema is documented in the next sections. The public config also includes a genesis.json file which
defines the genesis (or initial) state of the system. This includes information about the genesis block as well
as the initial accounts, balance and storage.

The TLS certificates are stored in pem format and stored in subdirectories named after the principal id
specified in the concord.config file. Each principal has a client/server pair, consisting of the public client.cert
and server.cert, as well as a pk.pem file containing the private key. More details about the TLS certificate
directory format and repository can be found in the next sections.

A convenience tool for generating configuration files and TLS certificates simplifies deployment.

Confguration File Generator

Concord nodes each have to have their own configuration files and certificates, which may be difficult to generate
by hand. To simplify this task, we provide a convenience tool, conc_genconfig which generates configuration files
as well as the TLS certificates necessary to start a Concord deployment. conc_genconfig takes a yaml file
named configurationInput.yml.

configurationInput.yml

Note

The deployment documentation is currently a work in progress. Help contribute documentation
by submitting a pull request! You can edit this page by clicking on the Edit on GitHub
link on the top right.

concord.config

Note

The deployment documentation is currently a work in progress. Help contribute documentation
by submitting a pull request! You can edit this page by clicking on the Edit on GitHub
link on the top right.

genesis.json

The genesis.json file contains the genesis (initial) state of the system. It is stored in JSON format, and
a sample file is shown below:

{
 "config": {
 "chainId": 1,
 "homesteadBlock": 0,
 "eip155Block": 0,
 "eip158Block": 0
 },
 "alloc": {
 "262c0d7ab5ffd4ede2199f6ea793f819e1abb019": {
 "balance": "12345"
 },
 "5bb088f57365907b1840e45984cae028a82af934": {
 "balance": "0xabcdef"
 },
 "0000a12b3f3d6c9b0d3f126a83ec2dd3dad15f39": {
 "balance": "0x7fffffffffffffff"
 }
 },
 "nonce": "0x000000000000000",
 "difficulty": "0x400",
 "mixhash": "0x00",
 "parentHash": "0x00",
 "gasLimit": "0xf4240"
}

TLS certificates

Note

The deployment documentation is currently a work in progress. Help contribute documentation
by submitting a pull request! You can edit this page by clicking on the Edit on GitHub
link on the top right.

EthRPC Nodes

Concord nodes are provided by the concord-ethrpc container. Typically, you run the container with the command:

docker run concord-ethrpc:latest java -jar concord-ethrpc.jar --ConcordAuthorities=<host>:<port> \
--security.require-ssl=true --server.ssl.key-store-type=PKCS12 --server.ssl.key-store=/config/keystore.p12 \
--server.ssl.key-store-password=Ethrpc!23 --server.ssl.key-alias=ethrpc

Attention

To simplify deployment, you may disable SSL by setting -security.require-ssl=false. However,
this is not recommended in production environments for security reasons.

The --ConcordAuthorities=<host>:<port> specifies the <host>, a hostname or ip address and API <port>
of the Concord node. The --security.ssl.* parameters specify the SSL key that the HTTPS endpoint will use.
The defaults shown above are for the self-signed certificates provided in the docker/resources/config-ethrpc*
folders. You may configure the server with your own certificate.

Tutorials

Note

The tutorials documentation is currently a work in progress. Help contribute documentation
by submitting a pull request! You can edit this page by clicking on the Edit on GitHub
link on the top right.

Installing your first smart contract

In this first tutorial, we’ll install a simple Hello World contract into Concord and interact with it.
This tutorial assumes you’ve followed the steps from the getting started,
Start by running the simple four node Concord instance, simple4.yml from the getting started file:

docker-compose -f docker/compose/simple4.yml up

Next, start the truffle image:

docker exec -it compose_concord-truffle_1 bash

We’ll now create a simple hello world contract. We’ll use vim to create the contract, which
needs to be inserted in the contracts directory:

vi contracts/HelloWorld.sol

Insert the following code and save the file:

pragma solidity ^0.5.8;
contract HelloWorld {
 address public creator;
 string public message;

 constructor() public {
 creator = msg.sender;
 message = 'Hello, world';
 }
}

Now, we’ll need to create a javascript file to instruct truffle to deploy the contract. This file needs
to be inserted in the migrations directory:

vi migrations/2_deploy_contracts.js

Insert the following code and save the file:

var HelloWorld = artifacts.require("./HelloWorld.sol");

module.exports = function(deployer) {
deployer.deploy(HelloWorld);
};

Now we can deploy the contract by running:

truffle migrate --network ethrpc1

If the contract is sucessfully deployed, you should see output similar to:

Compiling your contracts...
===========================
> Compiling ./contracts/HelloWorld.sol
> Compiling ./contracts/Migrations.sol
> Artifacts written to /truffle/build/contracts
> Compiled successfully using:
 - solc: 0.5.8+commit.23d335f2.Emscripten.clang

Starting migrations...
======================
> Network name: 'ethrpc1'
> Network id: 5000
> Block gas limit: 0xf4240

1_initial_migration.js
======================

 Deploying 'Migrations'

 > transaction hash: 0x7a62d178231bcee0167fd82330e96781bcf15e08c186a143de68bf0ce0a163c5
 > Blocks: 0 Seconds: 0
 > contract address: 0xc2b3150D03A3320b6De3F3a3dD0fDA086C384eB5
 > block number: 1
 > block timestamp: 1571682384
 > account: 0x262C0D7AB5FfD4Ede2199f6EA793F819e1abB019
 > balance: 0.000000000000012345
 > gas used: 5449
 > gas price: 0 gwei
 > value sent: 0 ETH
 > total cost: 0 ETH

 > Saving migration to chain.
 > Saving artifacts

 > Total cost: 0 ETH

2_deploy_contracts.js
=====================

 Deploying 'HelloWorld'

 > transaction hash: 0x73bc4a9e91b0da818cec84259c0faee8e46d26bdffa14d72ad51447c4e2870d6
 > Blocks: 0 Seconds: 0
 > contract address: 0x7373de9d9da5185316a8D493C0B04923326754b2
 > block number: 3
 > block timestamp: 1571682385
 > account: 0x262C0D7AB5FfD4Ede2199f6EA793F819e1abB019
 > balance: 0.000000000000012345
 > gas used: 11019
 > gas price: 0 gwei
 > value sent: 0 ETH
 > total cost: 0 ETH

 > Saving migration to chain.
 > Saving artifacts

 > Total cost: 0 ETH

Summary
=======
> Total deployments: 2
> Final cost: 0 ETH

Next, we’ll want to interact with the contract. We can do that through the truffle
console:

truffle console --network ethrpc1

The truffle console accepts javascript as input.
We can get acceess to the HelloWorld contract through the HelloWorld variable.
We want the deployed version of the contract, which we can retrieve using the asynchronous deployed() method.
In javascript, we can use await to wait for an asynchronous function (which returns a Promise) to complete:

var app = await HelloWorld.deployed()

Now you can acceess the contract through the app variable. If you type app. and press tab, tab completion
should give you the list of functions you can call:

truffle(ethrpc1)> app.
app.__defineGetter__ app.__defineSetter__ app.__lookupGetter__ app.__lookupSetter__ app.__proto__
app.hasOwnProperty app.isPrototypeOf app.propertyIsEnumerable app.toLocaleString app.toString
app.valueOf

app.abi app.address app.allEvents app.constructor app.contract
app.creator app.message app.send app.sendTransaction
app.transactionHash

Try calling the message function to view the message we entered in the app.
Remember, the function is asynchronous, so use the await keyword to resolve the Promise:

await app.message.call()
> 'Hello, world'

Congratulations, you just installed your first smart contract on Concord and made a simple call to one of its functions.

Developer

Note

The developer documentation is currently a work in progress. Help contribute documentation
by submitting a pull request! You can edit this page by clicking on the Edit on GitHub
link on the top right.

Concord is developed inside of Docker containers to simplify dependency management, and the easiest way to get
a development environment setup for Concord is by using Visual Studio Code [https://code.visualstudio.com/],
which includes Dev Container features, making it easy to deploy and debug from within a container.

Concord has a devcontainer.json file included in the repository which will correctly setup the container
and build environment.

Launching the Dev Container

To get a dev container environment for Concord, open your Concord checkout in Visual Studio Code. Open
the command palette (View > Command Palette...) and type Remote Containers: Reopen in container.

The dev container environment is setup with CMake tooling. When prompted to select a CMake kit, select clang-7.0.

Code Format

We enforce code formatting through clang-format. The build will fail if there are code
formatting errors. To fix formatting errors automatically, run the format target,
which will attempt to automatically fix any code formatting issues in the repository.

Getting Help

Currently, the best place to get help is via the Github issue tracker [https://github.com/vmware/concord/issues].

Index

 nav.xhtml

 Table of Contents

 		
 Concord

 		
 Getting Started

 		
 Deployment

 		
 Concord Nodes

 		
 Confguration File Generator

 		
 configurationInput.yml

 		
 concord.config

 		
 genesis.json

 		
 TLS certificates

 		
 EthRPC Nodes

 		
 Tutorials

 		
 Installing your first smart contract

 		
 Developer

 		
 Launching the Dev Container

 		
 Code Format

 		
 Getting Help

_images/logoConcord.png
@) concorp

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

